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1. Suf ficiency and Necessity

Simulation demonstr ates exis t ence, suf ficiency,

but not necessity.

Simulation can demonstr ate the untrut h of a proposition,

but not provide proofs or theorems,

simulations cannot provide gener ality.

What, never?

Does this matter?
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Formal Simulation

Mat hematical “model A” compr ises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i

denote the elements (equations, paramet ers, initial
conditions, etc) that constitut e the model.
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Formal Simulation

Mat hematical “model A” compr ises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i

denote the elements (equations, paramet ers, initial
conditions, etc) that constitut e the model.

Suf ficiency: If model A exhibits the desired target behaviour
B , then model A is sufficient to obt ain exhibit ed behaviour
B : A ⇒ B

Thus, any model that exhibits the desired behaviour is
suf ficient, and demonstr ates one conjunction of conditions
(or model) under which the behaviour can be simulated.

But if there are several such models, how can we choose
among them? And what is the set of all such conjunctions
(models)?
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Necessity

Necessity : Onl y those models A belonging to the set of
necessar y models N exhibit target behaviour B .

That is, (A ∈ N ) ⇒ B , and (D ∉ N ) ⇒ ⁄ B .
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Necessity

Necessity : Onl y those models A belonging to the set of
necessar y models N exhibit target behaviour B .

That is, (A ∈ N ) ⇒ B , and (D ∉ N ) ⇒ ⁄ B .

A dif ficult challenge: deter mine the set of necessary models,
N.

Since each model A = (a1∧ a2∧ a3
. . .∧ an), searching for the

set N of necessary models means searching in a high-
dimensional space, with no guar antee of continuity, and a
possible large number of non-linear inter actions among
elements.
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Lac k of Necessity Means ...

For ins tance, if D ⇒ ⁄ B , it does not mean that all elements a i

of model D are inv alid or wrong, only their conjunction, that
is, model D .

It might be only a sing le element that precludes model D
exhibiting behaviour B .
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Lac k of Necessity Means ...

For ins tance, if D ⇒ ⁄ B , it does not mean that all elements a i

of model D are inv alid or wrong, only their conjunction, that
is, model D .

It might be only a sing le element that precludes model D
exhibiting behaviour B .

But deter mining whet her this is so and which is the
of fending element is a costl y exercise, in gener al, for the
simulat or.

Therefore, without clear knowledge of the boundaries of the
set of necessary models, it is difficult to gener alise from
simulations.
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Simulation Can Demonstr ate Necessity . . .

onl y when the set N of necessary models is known to be
small (such as in the case of DNA str ucture by the time
Watson & Cric k were searching for it) is it relativel y easy to
use simulation to der ive necessity.
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when they hit on the simulation we know as the "double
helix", they knew it was right.
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Simulation Can Demonstr ate Necessity . . .

onl y when the set N of necessary models is known to be
small (such as in the case of DNA str ucture by the time
Watson & Cric k were searching for it) is it relativel y easy to
use simulation to der ive necessity.

They had much infor mation about the proper ties of DNA
(from other s):

when they hit on the simulation we know as the "double
helix", they knew it was right.

But still "A structure ...", not "The structure" in the title of
their 1953 Nature paper.
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2. Formalisation of Validation

Let set P be the possible range of obser ved (historical)
outputs of the real-world system.
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2. Formalisation of Validation

Let set P be the possible range of obser ved (historical)
outputs of the real-world system.

Let set M be the exhibit ed outputs of the model in any
week .

Let set S ⊂ P be the specific, historical output of the real-
world sys t em in any week .

Let set Q be the inter section, if any, between the set M and
the set S , Q ≡ M ∩ S .

We can charact erise the model output in several cases.
(Mankin et al. 197 7).
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Five Cases for Validation

a.
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Five Cases for Validation

a. no inter section between M and S (Q = ∅ ), then the model is
useless.

b. int ersection Q is not null, then the model is useful, to some
deg ree: will correctl y exhibit some real-world system
behaviour s, will not exhibit other behaviour s, and will exhibit
some behaviour s that do not his t oricall y occur. Bot h
incomplet e and inaccurat e.

c. If M is a proper subset of S (M ⊂ S) then all the model’s
behaviour s are cor rect (match historical behaviour s), but the
model doesn’t exhibit all behaviour that historicall y occur s:
accur ate but incomple t e.

d. If S is a proper subset of M (S ⊂ M ) then all historical
behaviour is exhibit ed, but will exhibit some behaviour s that
do not his t oricall y occur : complet e but inaccurat e.

e. If the set M is equiv alent to the set S (M ⇔ S), then (in your
dreams!) the model is complet e and accurat e.
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Or Graphicall y ...

(a)

S

M

(b)

S Q M

(e)

S M Q

(c)

S M Q

(d)

M S Q

Figure 1: Validity relationships (after Haefner (2005)).

a. useless

b. useful, but incomplet e and inaccurat e

c. accurat e but incomplet e

d. complet e but inaccurat e ← possibl y the bes t to aim for

e. complet e and accurat e
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Modelling Goals

One goal: to cons truct and calibrat e the model so that

M ≈ Q ≈ S : there are ver y few his t oricall y obser ved behaviour s
that the model does not exhibit,

and there are ver y few exhibit ed behaviour s that do not occur
his t oricall y.

The model is close to being both complet e and accurat e.
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Modelling Goals

One goal: to cons truct and calibrat e the model so that

M ≈ Q ≈ S : there are ver y few his t oricall y obser ved behaviour s
that the model does not exhibit,

and there are ver y few exhibit ed behaviour s that do not occur
his t oricall y.

The model is close to being both complet e and accurat e.

In practice, a modeller might be happier to achieve case d.,
where the model is complet e (and hence provides sufficiency
for all observed his t orical phenomena), but not accur ate.

Mark s R.E., (2007), Validating Simulation Models: A General
Fr amework and Four Applied Examples, Comput ational
Economics, 30(3): 265−290.
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Four Levels of Validation (Axt ell & Eps t ein 1994)

Level 0: Qualit ativel y similar at the micro level of individuals
(agents)
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Four Levels of Validation (Axt ell & Eps t ein 1994)

Level 0: Qualit ativel y similar at the micro level of individuals
(agents)

Level 1: Qualit ativel y similar at a higher, macro, level

Level 2: Quantit ative agreement of macro str uctures
eg. means, moments, distr ibutions, st atis tical tests

Level 3: Quantit ative agreement at the micro level
eg. agents behave exactl y the same.

Here we address Level 2, wit h a new moment, the SSM.
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Measurement

Q: how can we measure the degree of similar ity of two sets of
time-ser ies?
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Measurement

Q: how can we measure the degree of similar ity of two sets of
time-ser ies?

One: the historical record of the riv alrous dance among the
seller s in an oligopoly, while

The other : the output from a (agent-based) simulation model of
the market, where each seller agent prices this week as a
function of the state of the market last week (or earlier).

Q: how can we output validate our model agains t his t ory?

Or : how can we der ive a deg ree of confidence in the model
output?
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3. The Issue: Heterogenous Agents and Time-ser ies Pr ice

Two reasons to compare such model output agains t his t ory:

1.
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3. The Issue: Heterogenous Agents and Time-ser ies Pr ice

Two reasons to compare such model output agains t his t ory:

1. To choose better paramet er values, to "calibr ate" or
(more for mally) "estimat e" the model agains t the
his t orical record.

2. To measure how closel y the output reflects history, to
validat e the model.

We are int eres t ed in the second, having used machine learning
(t he GA) to der ive the model paramet ers in order to improve
each agent ’s weekl y profits (instead of fitting to his t ory) in our
agent-based model.

Figure 2 shows his t orical data from a U.S. supermarket chain’s
sales of (heterogeneous) brands of sealed, ground coffee, by
week in one city (Midgley et al. 1997).
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His t orical Data: Prices and Volumes in Chain 1

$
/l

b
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/w

e
e
k2000

4000

2.00

3.00

20 40 60 80

Figure 2: Weekl y Sales and Prices (Source: Midgley et al. 1997)
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Stylised facts of the historical data:

1.
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Stylised facts of the historical data:

1. Much movement in the prices and volumes of four
strategic brands — a riv alrous dance.

2. For these four (coloured) brands, high prices (and low
volumes) are punctuat ed by a low price (and a high
volume).

3. The remaining five brands exhibit stable prices and
volumes, by and large. For this reason we abs tract away
from these five brands, and focus solely on the first four.

In addition, the competition is not open slather : the
super market chain imposes some res trictions on the timing and
identity of the discounting brands.
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A Model of Str ategic Inter action

We assume that the price Pb ,w of brand b in week w is a
function of the state of the market Mw at week w , where Mw

in turn is the product of the weekl y pr ices Sw of all brands over
several week s:

Pb ,w = fb (Mw ) = fb (Sw −1 × Sw −2 × Sw −3
. . .)

< >



Sydney Agents 19 August 2010 Page 17

A Model of Str ategic Inter action

We assume that the price Pb ,w of brand b in week w is a
function of the state of the market Mw at week w , where Mw

in turn is the product of the weekl y pr ices Sw of all brands over
several week s:

Pb ,w = fb (Mw ) = fb (Sw −1 × Sw −2 × Sw −3
. . .)

Earlier in the research prog ram undertaken wit h David Midgley
et al., we used the Genetic Algorit hm to search for "better"
(i.e. more profit able) br and-specific mappings, fb , from market
st ate to pricing action.

And derived the paramet ers of the model, and derived its
simulat ed behaviour, as time-ser ies patt erns (below).
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4. The Method — Measuring the Distance Between Sets of
Time-ser ies using the St ate Similarity Measure

The SSM method introduced here reduces the dimensionality of
the his t orical behaviour (and sometimes the model output too)
by par titioning the price line in order to der ive a measure of
similar ity or distance beween two sets.
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4. The Method — Measuring the Distance Between Sets of
Time-ser ies using the St ate Similarity Measure

The SSM method introduced here reduces the dimensionality of
the his t orical behaviour (and sometimes the model output too)
by par titioning the price line in order to der ive a measure of
similar ity or distance beween two sets.

Mark s (1998) explores partitioning while maximising
infor mation (using an entropy measure); maximising profits
would be a better crit erion. Finds that dichotomous partition is
suf ficient.

Here: use symmetric dichotomous partitioning: a brand’s price is
labelled 0 if above its midpoint, else 1 below.

Then defining market states first by week Sw and then by
multi-week window Mw , counting the frequency of each state,
subtr acting the two sets ’ frequencies, and summing the
absolut e dif ference.

< >



Sydney Agents 19 August 2010 Page 19

Dichotomous Symmetric Price Par titioning of Chain 1
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Figure 3: Partitioned Weekl y Pr ices of the Four Chain-One Brands
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Calculating the Weekl y Sw and Window Mw St ates

Week Red Pur ple Green ∴ Sw ∴ Mw

18 0 0 0  0
19 0 0 0  0
20 0 0 0  0 0
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18 0 0 0  0
19 0 0 0  0
20 0 0 0  0 0
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Calculating the Weekl y Sw and Window Mw St ates

Week Red Pur ple Green ∴ Sw ∴ Mw

18 0 0 0  0
19 0 0 0  0
20 0 0 0  0 0
21 1 0 0  4 256
22 0 1 0  2 160
23 1 0 0  4 276
24 1 1 0  6 41 8
25 0 0 1  1 11 6
26 0 0 0  0 14
27 0 0 0  0 1
28 0 1 0  2 128
29 1 0 0  4 272
30 1 1 0  6 41 8

Three Brands, 3-Week Window
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Calculating the SSM Between to Two Sets of Time Series

More for mally:

1.
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More for mally:

1. For each set, partition the time-series {Pb ,w } of price
Pb ,w of brand b in week w int o {0,1}, where 0
cor responds to "high" price and 1 corresponds to "low"
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pr ice to obt ain time-ser ies {Pb ,w ′};

2. For the set of 3- or 4-brand time-series of brands ’
par titioned pr ices {Pb ,w ′}, calculate the time-series of
the state of the market each week {Sw };
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Calculating the SSM Between to Two Sets of Time Series

More for mally:

1. For each set, partition the time-series {Pb ,w } of price
Pb ,w of brand b in week w int o {0,1}, where 0
cor responds to "high" price and 1 corresponds to "low"
pr ice to obt ain time-ser ies {Pb ,w ′};

2. For the set of 3- or 4-brand time-series of brands ’
par titioned pr ices {Pb ,w ′}, calculate the time-series of
the state of the market each week {Sw };

3. For each set, calculate the time-series of the state of the
3- or 4-week moving window of par titioned pr ices {Mw },
from the per-week states {Sw };
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4.
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4. Count the numbers of each state obser ved for the set of
time-ser ies ov er the given time period; conve y this by an
n × 1 vect or cc , where cc[s] = the number of observations
of window state s ov er the period;

5.
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time-ser ies ov er the given time period; conve y this by an
n × 1 vect or cc , where cc[s] = the number of observations
of window state s ov er the period;

5. Subtr act the number of observations in set A of time-
ser ies from the number observed in set B, across all n

possible states; dd
AB = cc

A − cc
B ;

6.
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of window state s ov er the period;

5. Subtr act the number of observations in set A of time-
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6. Sum the absolute values of the differences across all
possible states:

(1)D
AB = 11′ × |dd AB |

< >



Sydney Agents 19 August 2010 Page 22

4. Count the numbers of each state obser ved for the set of
time-ser ies ov er the given time period; conve y this by an
n × 1 vect or cc , where cc[s] = the number of observations
of window state s ov er the period;

5. Subtr act the number of observations in set A of time-
ser ies from the number observed in set B, across all n

possible states; dd
AB = cc

A − cc
B ;

6. Sum the absolute values of the differences across all
possible states:

(1)D
AB = 11′ × |dd AB |

This number D
AB is the dis tance between two time-series

se ts A and B.

This method is called the State Similarity Measure.
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5. The Results
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5. The Results

Having derived the distance between two sets of time-series
using the St ate Similarity Measure, by calculating the sum of
absolut e dif ferences in observed window states between the
two set, so what?

< >



Sydney Agents 19 August 2010 Page 23

5. The Results

Having derived the distance between two sets of time-series
using the St ate Similarity Measure, by calculating the sum of
absolut e dif ferences in observed window states between the
two set, so what?

First, the great er the sum, the more dis tant the two sets of
time-ser ies.

< >



Sydney Agents 19 August 2010 Page 23

5. The Results

Having derived the distance between two sets of time-series
using the St ate Similarity Measure, by calculating the sum of
absolut e dif ferences in observed window states between the
two set, so what?

First, the great er the sum, the more dis tant the two sets of
time-ser ies.

Second, we can calculate the maximum size of the summed
dif ference: zero int ersection between the two sets (no states in
common) implies a measure of 2 × S where S is the number of
possible window states, from the data.
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5. The Results

Having derived the distance between two sets of time-series
using the St ate Similarity Measure, by calculating the sum of
absolut e dif ferences in observed window states between the
two set, so what?

First, the great er the sum, the more dis tant the two sets of
time-ser ies.

Second, we can calculate the maximum size of the summed
dif ference: zero int ersection between the two sets (no states in
common) implies a measure of 2 × S where S is the number of
possible window states, from the data.

Third, we can derive some statis tics to show that any pair of
sets in not likel y to include random series (below).
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The Historical Data: A Diver sity of Brands in the Chains
There are seven chains, containing a var iety of brands, some (1,
2, 4, 5) active riv als, the res t non-s trat egic.

B r a n d s
1 2 3 4 5 6 7 8 9 10 11 12

Chain 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Chain 2 ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓
Chain 3 ✓ ✓ ✓ ✓ ✓  ✓ ✓
Chain 4 ✓ ✓ ✓ ✓ ✓
Chain 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Chain 6 ✓ ✓ ✓ ✓
Chain 7 ✓ ✓ ✓ ✓ ✓  ✓

Table 1: The Historical Data: The Seven Chains and the Twelve Brands

(Br and 1=Folger s, 2=Maxwell House, 3=Master Blend, 4=Hills Bros,
5=Choc k Full O Nuts, 6=Yuban, 7=Chase & Sanbourne, etc.)
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SSMs Between Four Chains (with Brands 1, 2, 4, 5)

Chain 1 Chain 2 Chain 3 Chain 7

Chain 1 0 128 112 110
Chain 2 128 0 132 138
Chain 3 11 2 132 0 12 4
Chain 7 11 0 138 124 0

Random 150 150 150 150

Table 2: SSMs Between Four Chains (with Brands 1, 2, 4, 5)
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Chain 7 11 0 138 124 0

Random 150 150 150 150

Table 2: SSMs Between Four Chains (with Brands 1, 2, 4, 5)

With two possible states per week per brand and four brands:

24 possible weekl y st ates; with a four-week window, there are

164 = 65, 536 possible window states.

< >



Sydney Agents 19 August 2010 Page 25

SSMs Between Four Chains (with Brands 1, 2, 4, 5)

Chain 1 Chain 2 Chain 3 Chain 7

Chain 1 0 128 112 110
Chain 2 128 0 132 138
Chain 3 11 2 132 0 12 4
Chain 7 11 0 138 124 0

Random 150 150 150 150

Table 2: SSMs Between Four Chains (with Brands 1, 2, 4, 5)

With two possible states per week per brand and four brands:

24 possible weekl y st ates; with a four-week window, there are

164 = 65, 536 possible window states.

With 75 overlapping four-week windows, S = 75, and the
maximum measure (dis tance) is 150.
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Testing for Randomness Figure 4
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The red lines are the CMF of pairs of sets of random series (4
ser ies, 75 observations) from 100,000 Monte Carlo paramet er
boots traps.
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Testing for Randomness Figure 4
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The red lines are the CMF of pairs of sets of random series (4
ser ies, 75 observations) from 100,000 Monte Carlo paramet er
boots traps.

All six measured SSMs are significantl y not random.

The one-sided c.i. at 1% corresponds to a SSM of 148, much
exceeding the great es t dis tance (between Chains 2 and 7) of
138.
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Percent age Matches Between Four Chains (with Brands 1, 2, 4,
5)

Chain 1 Chain 2 Chain 3 Chain 7

Chain 1 100 14.67 25.33 26.67
Chain 2 14.67 100 12.0 8.0
Chain 3 25.33 12.0 100 17.33
Chain 7 26.67 8.0 17.33 100

Random 0 0 0  0

Table 3: Percent age Matches Between Four Chains (with Brands
1, 2, 4, 5)
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Chain 1 Chain 2 Chain 3 Chain 7
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Chain 2 14.67 100 12.0 8.0
Chain 3 25.33 12.0 100 17.33
Chain 7 26.67 8.0 17.33 100

Random 0 0 0  0

Table 3: Percent age Matches Between Four Chains (with Brands
1, 2, 4, 5)

Table 3 is derived from Table 2, with 150 the maximum possible
dis tance between sets.
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Percent age Matches Between Four Chains (with Brands 1, 2, 4,
5)

Chain 1 Chain 2 Chain 3 Chain 7

Chain 1 100 14.67 25.33 26.67
Chain 2 14.67 100 12.0 8.0
Chain 3 25.33 12.0 100 17.33
Chain 7 26.67 8.0 17.33 100

Random 0 0 0  0

Table 3: Percent age Matches Between Four Chains (with Brands
1, 2, 4, 5)

Table 3 is derived from Table 2, with 150 the maximum possible
dis tance between sets.

No te that there is a 100% own match, and that there is zero
match between the Random pricing process and any of the
his t orical chains.
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SSMs Between All Seven Chains (with Brands 1, 2, 3)

C h a i n

1 2 3 4 5 6  7
Chain 1 0 70 82 76 102 132* 74
Chain 2 70 0 82 98 90 120† 98
Chain 3 82 82 0 100 96 122† 102
Chain 4 76 98 100 0 80 128* 58
Chain 5 102 90 96 80 0 11 4 92
Chain 6 132* 120† 122† 128* 114 0 130*
Chain 7 74 98 102 58 92 130* 0

Random 144 136 148 144 140 146 144

Table 4: SSMs Between All Chains (with Brands 1, 2, 3)
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SSMs Between All Seven Chains (with Brands 1, 2, 3)

C h a i n

1 2 3 4 5 6  7
Chain 1 0 70 82 76 102 132* 74
Chain 2 70 0 82 98 90 120† 98
Chain 3 82 82 0 100 96 122† 102
Chain 4 76 98 100 0 80 128* 58
Chain 5 102 90 96 80 0 11 4 92
Chain 6 132* 120† 122† 128* 114 0 130*
Chain 7 74 98 102 58 92 130* 0

Random 144 136 148 144 140 146 144

Table 4: SSMs Between All Chains (with Brands 1, 2, 3)
(* : cannot reject the null of random at the 5% level)
(† : cannot reject the null of random at the 1% level)
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Table 4 — Historical Sets Compared using the SSM
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Table 4 — Historical Sets Compared using the SSM

With three brands (1, 2, 3) treat ed as str ategic, and three-week

windowing, there are 83 = 512 possible window states.
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Table 4 — Historical Sets Compared using the SSM

With three brands (1, 2, 3) treat ed as str ategic, and three-week

windowing, there are 83 = 512 possible window states.

The historical data include S = 76 overlapping three-week
windows, so the maximum distance between any two chains is
152.

The Random results are almos t the maximum possible distance
from the chains.

The closest chains are Chain 4 and 7, wit h 152 − 58 = 94 states
in common, or 61.84%.
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Testing for Randomness Figure 5
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Testing for Randomness Figure 5
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The red lines are the CMF of pairs of sets of random series (3
ser ies, 76 obser vations) from 100,000 Monte Carlo paramet er
boots traps.
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Testing for Randomness Figure 5
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The red lines are the CMF of pairs of sets of random series (3
ser ies, 76 obser vations) from 100,000 Monte Carlo paramet er
boots traps.

The one-sided c.i. at 1% corresponds to a SSM of 118, and at
5% 122.

Cannot reject the null hypothesis (random sets) for Chain 6 and
Chains 1, 4, or 7 (5%) or for Chain 6 and Chains 2 or 3 (1%).
The null is reject ed for all other pairs.
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Example of a Simulated Oligopoly (Mark s et al. 1995)

Simulating riv alry between the three asymmetric brands: 1, 2,
and 5, Folger s, Maxwell House, and Chock Full O Nuts.

Week

$
/l

b

10 20 30 40 50
1.5

2

2.5

3

Figure 6: Example of a Simulated Oligopoly (Mark s et al. 1995)
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SSMs Between Chain 1 and Three Runs (Brands 1, 2, 5)

Chain 1 Run 11 Run 26a Run 26b

Chain 1 0 82* 68 68
Run 11 82* 0 66 60

Run 26a 68 66 0 30
Run 26b 68 60 30 0

Table 5: SSMs Between Chain 1 and Three Runs (Brands 1, 2, 5)
(* : cannot reject the null at the 5% level)
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SSMs Between Chain 1 and Three Runs (Brands 1, 2, 5)

Chain 1 Run 11 Run 26a Run 26b

Chain 1 0 82* 68 68
Run 11 82* 0 66 60

Run 26a 68 66 0 30
Run 26b 68 60 30 0

Table 5: SSMs Between Chain 1 and Three Runs (Brands 1, 2, 5)
(* : cannot reject the null at the 5% level)

Here, S , the maximum number of states = 48, so the maximum
dis tance apart is 96. The three Runs are closer to each other
than to his t orical Chain 1; Runs 26a and 26b are ver y close,
onl y 30/96 = 31.25% apart.
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Testing for Randomness Figure 7
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The red lines are the CMF of pairs of sets of random series (3
ser ies, 48 observations) from 100,000 Monte Carlo paramet er
boots traps.
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The red lines are the CMF of pairs of sets of random series (3
ser ies, 48 observations) from 100,000 Monte Carlo paramet er
boots traps.

The one-sided c.i. at 1% corresponds to a SSM of 76, and at 5%
80.

Cannot reject the null hypothesis (random sets) for Chain 1 and
Run 11; reject the null (random) hypothesis for all other pairs.
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6. Conclusions — the State Similar ity Measure

This measure, the State Similarity Measure (SSM), is sufficient to
allow us to put a number on the degree of similar ity between
two sets of time-series which embody dynamic responses.
There is no limit to the number of time-series in each set,
alt hough the two sets must cont ain an equal number of series.
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There is no limit to the number of time-series in each set,
alt hough the two sets must cont ain an equal number of series.

Such a metric is necessary for scoring the distance between any
two such sets, which previousl y was unavailable.

Here, the SSM has been developed to allow us to measure the
extent to which a simulation model that has been chosen on
some other crit erion (e.g. weekl y profit ability) is similar to
his t orical sets of time-series.
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6. Conclusions — the State Similar ity Measure

This measure, the State Similarity Measure (SSM), is sufficient to
allow us to put a number on the degree of similar ity between
two sets of time-series which embody dynamic responses.
There is no limit to the number of time-series in each set,
alt hough the two sets must cont ain an equal number of series.

Such a metric is necessary for scoring the distance between any
two such sets, which previousl y was unavailable.

Here, the SSM has been developed to allow us to measure the
extent to which a simulation model that has been chosen on
some other crit erion (e.g. weekl y profit ability) is similar to
his t orical sets of time-series.

The SSM will also allow us to measure the distance between
any two sets of time-series and so to estimat e the par ameter s,
or to help calibrat e a model agains t his t ory, or to compare any
two such sets.
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