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ABSTRACT

Genetic algorithms (GAs) have been used extensively in
engineering and computer science to optimize specific
functions, especially those which exhibit non-convexities
and so are not amenable to calculus-based methods of
optimization. A parallel use of GAs has been to solve
algorithmic problems. A third domain in which GAs
have been used is that of searching for mappings which
optimize a repeated procedure. An offshoot of this has
been their use in what has been called co-evolution of
mappings. This paper reports results from a project in
which GAs have been used to, first, to derive mappings
which may explain the behavior of brand managers in an
oligopolistic retail market for coffee, and, second, to
attempt to improve on the historical profits of these
brand managers, pitted in weekly competition with each
other, vying for sales and profits with their different
brands of ground, sealed coffee on the supermarket
shelves. As well as advancing the practice of GAs, with
separate populations competing, the work also advances
our understanding of modeling players in repeated
oligopolistic interactions, or games.

1.  INTRODUCTION

The theory of oligopolistic behavior (that is, the behavior
of sellers in a market with a small number of sellers, but
many buyers, so that one seller’s actions will affect the

profits of other sellers, and vice versa) has mainly been
approached from the point of view of searching for Nash
equilibria in players’ actions, that is, a combination of
actions, where each player’s actions are the best he can
do for himself, given that the other players’ actions are
the best they can do for themselves. Such a combination
is self-reinforcing, since no single player has an
incentive to alter his actions.

The project reported here, however, has been
concerned with trying to explain and to improve upon
the historical behavior and profits of a group of sellers,
as recorded in supermarket scanner data, and using a
market model to predict one-shot (weekly) profits of
each player, given the marketing actions of all players.
The data have been described in a recent article [1].
Briefly, each player has a choice of weekly actions: price
per pound, coupons, in-store promotional displays, and
featured local advertising. The CASPER market model
[2], estimated from historical data, is used to identify
each of the several firms’ weekly profits, given all brand
managers’ actions.

We modeled the brand managers, the players, as
stimulus-response automata [3], where the response is
the player’s marketing actions for the next week, and the
stimulus is the state of the market this week, which we
took to be a function of all players’ actions this week and
last week and several weeks past. The reason we believe
that managers remember past actions is that this means
they can respond to movements (aggressive or
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conciliatory) in other players’ pricing.
For instance, it turns out that historically most

prices and most sales have been made when prices are
low. So if one brand, say Folgers, were pricing
aggressively low last week, and raises its price this week,
this could be a signal that it is becoming less aggressive,
and might like reciprocation from its rival brands. If the
brand managers are able to remember more than two
weeks of marketing actions, then they may respond not
just to rising or falling prices of their rivals, but also how
quickly these prices are rising or falling. These issues
are explored at greater length in [4].

2.  MODELING THE MANAGERS

We model each manager as a finite automaton that
responds to the state of the market with a set of
marketing actions. To do this we need a set of rules,
which are here represented by a binary string, following
the Axelrod/Forrest representation [5]. Each string
becomes an individual in a population of strings as
artificial brand managers, and each string’s average
profit after a series of repeated interactions with the other
artificial brand managers can be used as its “fitness” for
the GA [6].

To be specific, say there are p players, each with a
possible actions per week, and m weeks of memory, then
the total number of possible states is given by

number of possible states = a mp. (1)

This number increases rapidly: with three players, four
actions, and one week of memory there are 64 possible
states, but increasing memory to two weeks increases the
number of possible states to 4,096.

Moreover, the length of the bit-string is only equal
to the number of possible states in the unlikely event that
a player can choose only from two possible actions,
which can then be coded as zero or one. If, however, the
player can choose from four actions, then the bit length
doubles, and from eight actions it trebles, so that each
possible state corresponds to three bits, which code for
eight possible actions.

We are modeling the brand managers as
boundedly rational: bounded in terms of their
perceptions of reality, which is really saying that it is
costly to perceive reality finely [4]; bounded in terms of
their memory (which is another way of saying that their
perception is limited because costly); and bounded in
terms of the possible actions they can make. None the
less, we found that our simple finite-automaton artificial
brand managers could outperform their historical flesh-

and-blood forbears [1]. In showing this, we were able to
develop strings (using the GA to search through the
space of possible mappings from history to actions) that
represented real strategies in asymmetric markets
(asymmetric because the brands historically faced
different costs, evoked different responses from
customers, and chose from different sets of possible
actions).

This line of research does not merely pit each bit-
string against a complex and sometimes noisy
environment, as had been done by others, in looking at
artificial players in repeated games [5]. We co-evolved
the players, so that each string was being tested for its
fitness against the consequences of other strings, which
in turn were being tested for their fitness [7]. This may
be a good example of Szpiro’s “surfing in a seascape”
[8].

2.1  The Agents’ Choices
Given the problem of the curse of dimensionality, with
rapid growth in the length of the bit strings modeling the
agents, the question at first was how could we model the
market interactions with the smallest sacrifice of
realism? We focussed on the three most active brands in
the market: Folgers, Maxwell House, and Chock Full O’
Nuts, although later we have increased the number of
strategic players.

We assumed that the decision to use coupons was
equivalent to a reduction in price. Moreover, we chose
at first to use only four possible prices, instead of the
range available to the historical managers (from $1.50
per pound to about $3.00 per pound). For each of the
three players we examined the historical pricing
decisions to arrive at the brand-specific sets of four
possible prices per player. At the same time, realising
that other marketing actions (advertising feature and
aisle display) were highly correlated with price, we
factored those into the four pricing actions. (Only when
the price is low did the historical players use feature or
display, presumably to move more stock at an attractive
price; see [1] for more discussion.)

To begin with, we modeled the players as
remembering the actions of all three players of only one
week ago, although this was relaxed later. With three
players, each with four possible actions per week, and
one week’s memory, equation (1) tells us there are 64
possible states. With four possible actions, each state
must map to two bits on the player’s string. When,
following [5], we use six bits for the phantom memory
used in the first round (effectively endogenising the
initial conditions of the simulation), each player is
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modeled with a 134-bit string. Not only are 134-bit
strings easy to simulate, but the 75 weeks of historical
data provided sufficient to evolve effective strings of this
length.

Although it would have been possible to link the
CASPER market model (which derives each brand’s
weekly profit, given the other brands’ actions) to the GA,
we found that computing the market response functions
for each iteration of the game took an excessive time,
and we had problems in marrying the compiled CASPER
model with the compiled evaluation function of the GA.
Moreover, with only 64 possible states, it seemed more
elegant to derive three 4 × 4 × 4 payoff matrices off-line
(one per asymmetric brand), and to compile them into
the GA as look-up routines. This was done, although
later we would have to increase the dimensions of this
array quite considerably.

2.2  The Genetic Algorithm
There is no need to describe the workings of GAs in
1998. There are many books [6][9] and articles doing
this. Suffice it to say that in our earlier work [1] we
adapted GAucsd, the U.C. San Diego version of John
Grefenstette’s GENESIS [10]. We describe below the
extensions that we have made to it in order to examine
the phenomena under review.

3.  EXPERIMENTS

The results of the experiments described below are
reported in more detail in [1] and [11]. Our purpose here
is to discuss the extensions made to the GAucsd to
accommodate our models.

3.1  Unconstrained Agents
Despite some expectations that collusion would occur at
a high price (price is the most powerful of the several
marketing actions available to the sellers, and we
concentrate on it here), we found convergence, with all
brands pricing at their lowest historical prices. This
result was consistent with the historical observation that
most sales and most profits occur at low prices with
promotions, because of such behavior as stockpiling and
brand-switching. Ground coffee in vacuum sealed cans
has a storage life of up to seven weeks. Moreover, the
historical market was mature, with no external shocks on
either the supply side or the demand side.

3.2  Institutional Constraints
Unfortunately, these results were unrealistic since
historically only one brand a week has priced at the low
promotional level to which all brands had converged.
The supermarket chain whose scanner data we were

using had managed to maximize its profits while not
exhausting demand. Its policy was to constrain the
brands: only one brand promoting with low prices in any
week, and no brand promoting with low prices in two
successive weeks.

We mimicked this. Ties in which two or more
brands respond to the state of the market via their
mapping strings by both promoting at low prices were
broken by random choice, the loser pricing arbitrarily
high. In order to speed up the simulations, we
determined that we could examine the genotype (the
structure of each artificial brand’s bit-string) to see
whether that string’s low promotion price this week
would be followed by a similar price next week, rather
than waiting for the simulation to reveal the particular
realization of the player’s phenotype (its response
behavior). This “filtering” of strings greatly speeded up
the simulation, since strings whose structures revealed
illegal successive promotions were given arbitrarily low
fitness, and their characteristics were excluded from
future generations of strings by the GA. After 20
generations (with a population size of 25), most illegal
strings had vanished, and the last had usually
disappeared by generation 44.

Although the brands’ behavior was closer to that
seen historically [1], we found that, because the market
model CASPER had been written and estimated for a
single week’s interaction, the overall levels of low,
promotional prices were leading, with brand switching,
to demand saturation.

3.3  Demand Saturation
While the retail coffee market is very volatile in the short
run, it is very stable in the long run [1]. We pro-rated the
weekly total by the degree of over-saturation of the past
seven weeks, chosen to approximate the average
interpurchase interval for this product. We first
calculated the total sales volume per week, a function of
the actions of the three strategic brands and the
remaining non-strategic brands (whose behavior was
assumed to be static). We then calculated the average
total sales volume over the previous seven weeks and
with a figure for the historical average total sales volume
in this market calculated the percentage degree of
saturation. If this was above 100%, then the total sales
volume for the latest week was reduced by the degree of
saturation. (In steady state, this procedure means that
total sales volume must equal the historical average.)
Then the profits of the three strategic brands were
reduced from the limits now placed on each brand’s sales
volume.
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The results of this experiment are to be seen in
Figure 2 of [1]. The experiment results in a greater
degree of competition than observed historically, owing
to the immediacy of the simulation laboratory, in which
brands immediately respond to others’ actions last week.
The artificial brand managers thus generated average
weekly profits from 3.5 to 9.7 times higher than did the
historical brand managers.

3.4  Tests Against History
How well had our best artificial agents learned (or
evolved) to play the game which models the oligopolistic
market for coffee we are examining? In order to answer
this question, we took the most profitable agents from
the previous series of experiments (after 100 generations
of the GA) and tested each in turn against the historical
actions of their two strategic rivals. The historical
actions of the five non-strategic brands were also used,
but our artificial agents as modeled were blind to these
actions.

This was achieved by taking a string, designating
it as a particular brand, say Maxwell House, and
allowing it to respond to the historical actions of the two
rivals brands over a 52-week period of history. Since the
historical brand managers had had a much larger range of
prices and other actions to choose from (although the
artificial player’s range spanned the historical range), we
used a rough partitioning of the historical actions into
four intervals, to which the artificial agent responded [4].
Its performance was measured by its average profits over
this period, calculated weekly by CASPER, with the
historical actions of the other strategic and non-strategic
players as input. Since the GA’s population size was 25,
there were 25 possible strings: only later did we separate
the players into distinct populations to be evolved in
parallel by the amended GA.

The results are detailed in [1]. For two brands
(Folgers and Chock Full O’ Nuts) most of the strings
performed better than their historical counterparts did;
for Maxwell House only two of the 25 strings did
(although they were 20% more profitable, none the less).
Maxwell House historically was the most profitable of
the three brands, so perhaps the artificial agents faced a
higher performance hurdle.

A criticism of this experiment is that it is an
“open-loop” regime: although the artificial agent
responds to the historical actions, week by week, as it
had been bred to do by the GA, the historical actions are
fixed, with no possibility of responding to the artificial
agent’s action last week.

Another criticism, which we address in Section 3.5
below, is that we were using a single population of
strings in the GA. When the problem is static, a single
population of strings provides many possible solutions
(Holland’s “implicit parallelism” [12]), but when we
engage in coevolution with asymmetrical players, as
here, there is no reason to believe that “one size fits all”,
especially since the same state may best trigger quite
different responses in different brands.

Because of these concerns, we concluded that what
was impressive about these results was not that our
artificial agents could outperform their historical
counterparts, but that very simple agents (with only four
possible actions and one week’s memory) could generate
reasonable performance in the noisy coevolutionary
environment.

3.5  Multiple Population Simulations
As mentioned, despite the fact that we were coevolving
asymmetric agents, we — in common with all other
users of the GA — had been using a single population.
As well as making it much harder for the GA to search
for fitter mapping strings (consider: a single string might
perform well as one brand but badly as another), a single
population means that, through the genetic
recombination of the GA, strings may be communicating
genotypically, as well as phenotypically via their fitness
(profitability) in the repeated interaction. Tony Curzon
Price has called this “incest,” in a personal
communication.

We have extended GAucsd to include multiple
populations of bit strings, so that the fitness of any string
is dependent upon all strings in the other strategic
players’ populations. As well as making things less
noisy for the GA, having distinct populations means that
the strings are interacting only via their phenotypic
behavior, and not at the genotypic structural level, since
the populations are entirely separate, as far as the GA
knows.

Amending the GAucsd software was not a trivial
exercise, since three or four players may be interacting
many times in determining each string’s fitness (its
average weekly profits). One of us (Shiraz) took the
opportunity to streamline the logic of the fitness
evaluation functions, by recording the other strings’
performances during the round-robin interactions, so that
the new code with three populations is almost as fast as
the old code with a single population.

Because of the stochastic nature of the
simulations, we have performed Monte Carlo
simulations (50 runs each) to compare the convergence
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and profits of the common-population GA (25 strings, 50
simulations each) with those of the distinct-population
GA (three populations of 25 strings each, 50 simulations
each).

The distinct-population GA generates more
profitable strings and converges faster than does the
common-population GA. In aggregate, the
improvements to average weekly profit are only about
4%, but this summary statistic masks interesting brand-
specific outcomes: with distinct string populations,
Folgers’ profits increase by 3% and Maxwell House’s by
24%, while Chock Full O’ Nuts’ profits fall by 16%.
Distinct populations allow the Maxwell House strings to
better capitalize on that brand’s strengths.

The distinct-population GA allows the brands to
differentiate themselves more in terms of the patterns of
weekly response, as [11] reports. Moreover, when
testing strings from the distinct-population GA against
history (see Section 3.4 above), we found that strings
coevolved using the distinct-population GA did better
against history than did strings coevolved using the
common-population GA.

Indeed, we conclude that moving to distinct
populations has generally resulted in higher-performing
strings, both when coevolving and when competing
against the historical actions of brand managers, and that
distinct populations also result in greater heterogeneity in
the performance of each brand’s artificial agents.

3.6  Four Strategic Players
With the rewritten, multi-population GA code, it was
relatively easy to extend the simulations to a fourth
strategic player, at some cost in terms of the complexity
of the bit strings, which grew in length from 134 bits
(three players, four actions, one-week memory) to 520
bits (including the initial week’s phantom memory).

Although Hills Bros., the fourth player, was a
niche player, with smaller profits than the other brands,
its inclusion results in significant and complex changes
in the behavior and profitability of the three major
brands. The details can be read in [11]. The impacts
were greater than we had anticipated, but our approach
allows us to analyze the changes using a methodology
based on a detailed, realistic, and empirically grounded
model of consumer response.

3.7  Eight Actions per Player
We had chosen the number of four possible actions per
player for convenience in our initial work, but were
pleased with the results we obtained with our constrained
strings none the less. But rather than exogenously
imposing our decisions on the artificial managers, we

would prefer them to learn which actions were most
profitable, given the actions of their rivals. By
increasing the number of possible actions to eight, we
hoped to give the artificial managers the opportunity of
demonstrating that the four actions used previously were
robust, and that our assumption of a mature oligopoly
was correct.

Doubling the number of possible actions implies
further complexity: from 520 bits per string to 12,312
bits per string. Of each brand’s eight actions, we chose
six from an historical analysis, to which we added the
brand’s highest observed price and lowest promotional
price, thus providing each artificial manager with a much
richer set of possible actions than previously.

Although in early generations of the GA
simulation each of the eight actions is used with a similar
frequency, by the hundredth generation (25 individuals
per population) the artificial managers fall into one of
two patterns of competitive interaction, as revealed by 50
Monte Carlo runs, both of which employ many fewer
than eight actions. The managers have learnt the two or
three actions that are most profitable for them, given the
behavior of their rivals. Against the historical actions of
actual brand managers, the artificial managers do at least
as well as their historical counterparts. See [11] for
details.

3.8  Co-evolution: Sophisticates against Primitives
Unlike the use of GAs to solve static problems, where
the fitness scores of the simulation improve as
generations pass, when the strings model artificial
managers competing against other evolving artificial
managers — co-evolution — fitness scores may not
improve from generation to generation. Rather than
engaging an evolved string in the open-loop competition
against the frozen patterns of behavior of its historical
rivals, as reported in Section 3.4 above, we take a string
(the “sophisticate”) from the hundredth generation and
play it against rival strings (the “primitives”) from the
eighth generation.

Since the sophisticates have had many more
generations to learn and adapt than have the primitives,
we should expect them to score better against primitive
than against sophisticated rivals. But, using the original
three brands and 50-run Monte Carlo simulations, we
found that for two of the three brands the sophisticates
do not compete effectively with the primitives, a
phenomenon that Bernhard Borges has dubbed the
Holyfield-Tyson effect.

Is this due to genetic drift, where the gene pool of
a small population may change randomly, when specific
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genes (positions on our strings) are not useful in scoring
well? To test this conjecture, we increased the size of
each population from 25 to 250, which means that each
string now has to compete against 2502 combinations,
instead of 252, and there are ten times as many strings to
test, a thousand-fold increase in the number of three-way
interactions per generation. Convergence is also likely
to be much slower. We did not attempt Monte Carlos: a
single simulation run took weeks rather than days to
complete.

The results of our large-population simulations
[11] appear to eliminate genetic drift as an explanation,
but, given the length of the cycles of convergence, we
cannot rule out the emergence of higher-performing
sophisticates after the hundredth generation. Moreover,
we were able to in the time available to examine a model
with three players and four possible actions. Would an
eight-action model, allowing the artificial agents greater
degrees of freedom as discussion in Section 3.7 above,
demonstrate genetic drift? Our prior is no.

4.  CONCLUSIONS

Although we believe that our papers provide much
insight into the historical patterns of oligopolistic rivalry
in a mature market, as well as revealing how historical
brand managers might learn to improve their profitability
and competitiveness by consideration of the patterns and
strategies learnt by the artificial brand managers via the
GA simulation of coevolution, we have focussed here on
our contributions to the use of GAs in competition
analysis.

We have shown that it is possible and appropriate
to use multi-population GAs when co-evolving
asymmetric artificial agents. We have shown that the
GA can effectively used for bit-string agents of very high
complexity. We have shown the potential of GAs to be
used in exploring the patterns and strategies of
asymmetrical rivals in a mature oligopoly.
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